python - Loop for imputation -
i make imutation single variable & return same variable
x = pd.dataframe(df, columns=['a']) imp = imputer(missing_values='nan', strategy='median', axis=0) x = imp.fit_transform(x) df['a'] = x
however have many variables & want use loop this
f = df[[a, b, c, d, e]] k in f: x = pd.dataframe(df, columns=k) imp = imputer(missing_values='nan', strategy='median', axis=0) x = imp.fit_transform(x) df.k = x
but:
typeerror: index(...) must called collection of kind, 'a' passed
how can use loop imputation & return variables in dataframe?
a dataframe iterates on it's columns names k == 'a' in instance rather first column. implement with
f = df[[a, b, c, d, e]] k in f: x = df[k] imp = imputer(missing_values='nan', strategy='median', axis=0) x = imp.fit_transform(x) df[k] = x
but want build new dataframe using apply column wise. like
df = df.apply(imp.fit_transform, raw=true, broadcast=true)
or pandas has it's own methods working missing data: http://pandas.pydata.org/pandas-docs/stable/missing_data.html#filling-with-a-pandasobject
Comments
Post a Comment